bezier curve

Computing Dictionary

Bezier curve definition

graphics
A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n.
P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)]
B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i)
C(n, i) = n!/i!/(n-i)!
A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant.
Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline.
Other important properties are multiple values, global and local control, versatility, and order of continuity.
[What do these properties mean?]
(1996-06-12)
The Free On-line Dictionary of Computing, © Denis Howe 2010 http://foldoc.org
Cite This Source
Explore Dictionary.com
Previous Definition: bezier
Next Definition: bezier surface
Words Near: Bezier curve
More from Thesaurus.com
Synonyms and Antonyms for Bezier curve
More from Reference.com
Search for articles containing Bezier curve
More from Dictionary.com Translator
Dictionary.com Word FAQs

Dictionary.com presents 366 FAQs, incorporating some of the frequently asked questions from the past with newer queries.

Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature