# Euclidean

### or Euclidian

[yoo-klid-ee-uh n] /yuˈklɪd i ən/
1.
of or relating to Euclid, or adopting his postulates.
Origin of Euclidean
1650-1660
1650-60; < Latin Euclīdē(us) of Euclid (< Greek Eukleídeios) + -an
Dictionary.com Unabridged
Based on the Random House Dictionary, © Random House, Inc. 2016.
Cite This Source
Examples from the Web for Euclidean
Historical Examples
• Their geometry will, therefore, be Euclidean geometry, but their straight will not be our Euclidean straight.

• He acted as if he had demonstrated a Euclidean proposition flawlessly.

Gordon Randall Garrett
• The second stream of thought confined itself within the circle of ideas of Euclidean geometry.

• In elementary geometry, however, the Euclidean idea is still held.

David Eugene Smith
• We are obstructed by the fact that all existing physical science assumes the Euclidean hypothesis.

• He returned the proof, saying that he could not accept any of it as elucidating the exact area of a circle, or as Euclidean.

Stuart Dodgson Collingwood
• He constructed every one of his later speeches on the plan of a Euclidean solution.

Various
• The proof itself is borrowed, with slight alterations, from Cuthbertson's "Euclidean Geometry."

Stuart Dodgson Collingwood
• "City" is not necessarily descriptive: perhaps less so than the application of Euclidean axioms to advanced geometry.

Kris Ottman Neville
• That there exists a triangle, the sum of whose angles is congruent to a straight angle, the Euclidean; II.

Robert T. Browne
Word Origin and History for Euclidean

1650s, "of or pertaining to Euclid," from Greek Eukleides, c.300 B.C.E. geometer of Alexandria. Now often used in contrast to alternative models based on rejection of some of his axioms. His name in Greek means "renowned," from eu "well" (see eu-) + kleos "fame" (see Clio).

Online Etymology Dictionary, © 2010 Douglas Harper
Cite This Source
Euclidean in Science
 Euclidean   (y-klĭd'ē-ən)    Relating to geometry of plane figures based on the five postulates (axioms) of Euclid, involving the derivation of theorems from those postulates. The five postulates are: 1. Any two points can be joined by a straight line. 2. Any straight line segment can be extended indefinitely in a straight line. 3. Given any straight line segment, a circle can be drawn having the line segment as radius and an endpoint as center. 4. All right angles are congruent. 5. (Also called the parallel postulate.) If two lines are drawn that intersect a third in such a way that the sum of inner angles on one side is less than the sum of two right triangles, then the two lines will intersect each other on that side if the lines are extended far enough. Compare non-Euclidean.
The American Heritage® Science Dictionary
Cite This Source

### Difficulty index for Euclidean

Most English speakers likely know this word

### Word Value for Euclidean

0
16
Scrabble Words With Friends