Quiz: Remember the definition of mal de mer?

exact differential equation

type of differential equation that can be solved directly without the use of any of the special techniques in the subject. A first-order differential equation (of one variable) is called exact, or an exact differential, if it is the result of a simple differentiation. The equation P(x,y)y' + Q(x,y)=0, or in the equivalent alternate notation P(x,y)dy+Q(x,y)dx=0, is exact if Px(x,y)=Qy(x,y). (The subscripts in this equation indicate which variable the partial derivative is taken with respect to.) In this case, there will be a function R(x,y), the partial x-derivative of which is Q and the partial y-derivative of which is P, such that the equation R(x,y)=c (where c is constant) will implicitly define a function y that will satisfy the original differential equation.

Learn more about exact differential equation with a free trial on
Encyclopedia Britannica, 2008. Encyclopedia Britannica Online.
Cite This Source

Word of the Day

Word Value for exact

Scrabble Words With Friends

Nearby words for exact differential equation