mathematics A
vector which, when acted on by a particular
linear transformation, produces a scalar multiple of the original vector. The scalar in question is called the
eigenvalue corresponding to this eigenvector.
It should be noted that "vector" here means "element of a vector space" which can include many mathematical entities. Ordinary vectors are elements of a vector space, and multiplication by a matrix is a
linear transformation on them; smooth functions "are vectors", and many partial differential operators are linear transformations on the space of such functions; quantum-mechanical states "are vectors", and
observables are linear transformations on the state space.
An important theorem says, roughly, that certain linear transformations have enough eigenvectors that they form a
basis of the whole vector states. This is why
Fourier analysis works, and why in quantum mechanics every state is a superposition of eigenstates of observables.
An eigenvector is a (representative member of a)
fixed point of the map on the
projective plane induced by a
linear map.
(1996-09-27)